Events
- Categories
-
Tags
2e AMO Physics attosecond molecular processes Biomolecules CECAM CM1405 Computational Chemistry Computations Conference Control of Chemical Reactivity COST Action CM1405 DESY DFT dynamics Dynamics of Chemical Reactions e ECI ELI ESPA2018 ESR Expert Meeting Faraday Discussions FEL Femtochemistry femtosecond pulses Final Meeting GEFAM IBER2017 ICPEAC imaging Interstellar Molecules ISIAC IYL2015 Manuel Yañez meeting Molecular and Ionic Clusters Molecular Beams molecular excited states MOLIM networking activities News on-equilibrium quantum processes Otilia Mo PAH Photoinitiated processes Photoionization Quantum dynamics RES rontiers in attosecond theory RSEF School Solid state chemistry Spectroscopy statistics synergy TCCM Theoretical Chemistry Theoretical Spectroscopy Training School Ultrafast ultrafast dynamics Ultrafast electron dynamics Ultrafast imaging Ultrafast X-Ray ultraslow dynamics WATOC wg1 WG2 WG3 Workshop XFEL YSF Zewail

The XLIC WG1&WG2 Expert Meeting “From Ultrafast to Ultraslow Dynamics in Molecules and Clusters” will be held in the Weizmann Institute of Science Israel , from 23th to 25th January 2017.The Meeting is jointly organized by the Local organizing committee, the team of the conference unit of the Weizmann Institute and COST CM1204 Action (XLIC).
The workshop participation is open to everybody.
Scope and Program of the Meeting
Dynamical processes in molecular and cluster systems play an important role in different disciplines of research including atmospheric and interstellar chemistry, biology, nano-science and more. It is appealing to classify different types of dynamics according to their time scale – from attosecond electronic dynamics, femtosecond and picosecond ro-vibrational motion up to typical nanosecond times of spontaneous radiative processes. However, even in small clusters and biomolecules, coupling of many degree’s of freedom can lead to ultra-slow dynamics extending up to millisecond times.
In recent years, experimental techniques for studying these different dynamics have considerably advanced – from the development of ultrafast light sources, including high-order harmonic generation and free electron laser X-ray facilities, as well as highly controlled ion traps and ion storage rings that allow following a slow evolving time evolution of isolated molecular and cluster ions. On the theoretical side, quantum mechanical calculations provide insight regarding short time scales, while statistical models can describe long time dynamics on the ensemble level.
These communities have developed in parallel and often with little interaction with each-other. The goal of this workshop will be to bridge the gap between the different communities towards a full understanding of molecular and cluster dynamics. For example, it will be valuable to understand the role of initial ultrafast electronic and vibrational rearrangement of an isolated system on its slow decay by statistical fragmentation. Does ultrafast dynamics leading to internal conversion influence delayed recurrent fluorescence events? What is the importance of the coherent vibrational motion for long term processes and spectroscopic probes of isolated interstellar environments or biomolecular systems?
We aim at achieving this goal by bringing together leading experts from the different fields: including atto-second science, femto-chemistry, action spectroscopy, ion storage devices, time-dependent quantum mechanics and statistical physics – in order to promote a common language and shared goals. In particular, participants will be asked to highlight the scientific goals and challenges of each field to promote collaborative efforts. We hope that this conference will generate long term collaborations that will advance our understanding of molecular and cluster science across the different time scales.
Immportant dates
Abstract Submission Deadline: November 1st, 2016
Registration Deadline: January 5th, 2017
Registration
List of invited speakers
Noam Agmon, Hebrew University, Israel
Lars H. Andersen, Aarhus University, Denmark
Itzik Ben-Itzhak, Kansas State University, USA
Valerie Blanchet, CELIA, Bordeaux, France
Anastasia Bochenkova, Moscow State University, Russia
Steen Brondsted Nielsen, Aarhus University, Denmark
Philip Bucksbaum, Stanford, USA
Francesca Calegari, Politecnico Milano, Italy
Lorenz Cederbaum, University of Heidelberg, Germany
Henrik Cederquist, Stockholm University, Sweden
Brett Esry, Kansas State University, USA
Sharly Fleischer, Tel-Aviv University, Israel
Jason Greenwood, Queen’s University Belfast, UK
Christiane Koch, Universität Kassel, Germany
Ronni Kosloff, Hebrew University, Israel
Holger Kreckel, MPI-K Heidelberg, Germany
Stephen Leone, UC Berkeley, USA
Nimrod Moiseyev, Technion, Israel
Edvardas Narevicius, Weizmann Institute, Israel
Daniel Neumark, UC Berkeley USA
Thomas Pfeifer, MPI-K Heidelberg, Germany
Igor Schapiro, Hebrew University, Israel
Haruo Shiromaru, Tokyo Metropolitan University, Japan
Jan. R. R. Verlet, Durham University, UK
Mathias Weber, JILA, Colorado, USA
Roland Wester, Universität Innsbruck , Austria

The International school on “The Frontiers of Attosecond and Ultrafast X-ray Science” will be held from 19th to 28th March 2017 in Erice, Sicily, Italy.
The primary objective of this new school is to educate the next generation of scientists who will impact the future of attosecond and ultrafast x-ray science. We anticipate that the school will meet on a regular basis every two years and become a foundation for the ultrafast community. Consequently, the main topics of the course are the following: (i) attosecond science and technology, devoted to the generation and application of attosecond pulses to the investigation of electronic dynamics in atoms, molecules, nanostructures and condensed phases; (ii) fundamentals, methods and applications of free electron lasers, synchrotron radiation, ion collisions in atomic and molecular science. Lectures will cover current developments in theory and experiments but are also intended to give the basics of the field.
Please note that, PhD students and post-docs willing to attend the school can apply for scholarships (deadline 30 January 2017). For more details see: http://www.erice-attosecond.it/registration
The school co-organised by XLIC COST Action and sponsored by Politecnico di Milano, Italian Ministry of Education and Scientific Research, Sicilian Regional Parliament, ELI-ALPS and Ettore Majorana Foundation and Centre for Scientific Culture.
The organizers,
Louis Di Mauro, Alicja Domaracka, Mauro Nisoli and Sergio Martellucci

Photoinitiated processes are not only important for understanding natural phenomena but they also play an undeniable role in the booming fields of renewable energy, material design and medicine. Excited state processes have traditionally been explained from a static point of view, delivering in some cases a biased, incorrect or even incomplete description of the former. The simulation of the dynamics of such processes is therefore fundamental for the quest to understand the chemical and physical mechanisms.
The purpose of this school is to introduce its participants to state-of-the-art methodologies for the simulation of the dynamics of processes in the excited state, following the evolution in time of photoinitiated reactions, one of the priority topics of this call.
The school will be focused in simulating the dynamics of complex molecules. Electronic ab initio or TD-DFT methods would be sketched for obtaining the electronic wavefunctions or densities, that would be afterwards quantum-mechanically propagated. Moreover, several approaches for the treatment of the nuclei will be also provided, from full quantum dynamics to mixed quantum-classical dynamics.
The course is directed at PhD students, and young researchers, beginners in the field, working in theoretical chemistry and molecular physics.
More information at: https://www.cecam.org/workshop-1542.html
The CECAM workshop Seeking synergy between dynamics and statistics for non-equilibrium quantum processes will be held in Paris in June 6th-9th.
One of the major difficulties in achieving an accurate theoretical descriptions of non-equilibrium processes in quantum mechanical systems is framed by the desire to provide a representation of the system of interest that is as realistic as possible, in a manner that is computationally tractable. The coupling of electronic and nuclear motion involving excited states, the quantum nature of the nuclear degrees of freedom, and the application of time-dependent driving forces, are just few examples of the effects that must be addressed in order to simulate these processes. Each of these effects poses unique challenges to theoretical progress. A number of exact and approximate quantum dynamics techniques are being developed and refined in order to provide algorithms that respond to the demand for a balance between computational efficiency and physical accuracy. Currently available techniques are typically based upon two different, but equivalent, formulations of many-body quantum mechanics, the wave function approach or the density matrix picture.
The proposed workshop aims to bring together the two principal molecular quantum dynamics communities (wave-function methods and density matrix approaches). The scope is threefold, (i) to identify and explore common goals and obstacles, (ii) help in fostering new ideas to connect these approaches, and bridge the apparent gap between approximate dynamical and statistical descriptions, (iii) identify possible routes to extend dynamics approaches to the domain of statistics.
At the workshop, experts are asked to uncover the fundamental details of the methods in pedagogical lectures. These lectures will be followed by extensive discussions, during which contributed speakers and participants are welcome to put forth some of their doubts and problems in the relation between dynamics and statistics.
Further information can be at: https://www.cecam.org/workshop-1483.html
Preliminary invited speakers are:
Nandini Ananth (Cornell University, USA) Sara Bonella (CECAM, Switzerland) Irene Burghardt (Goethe University, Germany) Eitan Geva (University of Michigan, USA) E. K. U. Gross (Max-Planck Institute of Microstructure Physics, Germany) Raymond Kapral (University of Toronto, Canada) Dvira Segal (University of Toronto, Canada) Jeremy Richardson (ETH Zurich, Switzerland) Graham Worth (University College London, UK)
The two ICPEAC satellite meetings:
- The 25th International Symposium on Ion Atom Collisions (http://atom.curtin.edu.au/isiac)
- International Symposium on (e,2e), Double Photoionization and Related Topics with the 19th International Symposium on Polarization and Correlation in Electronic and Atomic Collisions http://atom.curtin.edu.au/e2epol
still welcome abstract submissions until the end of April. The confirmed invited speakers are available at the respective Scientific Program links.
We look forward to your participation,
Alisher Kadyrov, Chair of ISIAC
Igor Bray, Chair of (e,2e)-pol

The local organizing committee of the Catalan Chemical Society (SCQ) cordially invites you, on behalf of the Division of Computational and Theoretical Chemistry (DCTC) of the European Association of Chemical and Molecular Sciences (EuCheMS), to participate at the 11th European Conference on Theoretical and Computational Chemistry, September 4 – September 7, 2017, in Barcelona.
The conference will reflect recent advances, developments and trends in the field and its impact on related molecular sciences and technology. EuCO-TCC 2017 will provide a unique information and communication platform and will cover a wide range of subjects related to computational chemistry, theoretical chemistry, material sciences, biology and drug design, and from fundamental academic research to industrial applications.
This invitation is addressed to scientists in academia, industry and in governmental institutions. You are all warmly welcomed to share your most recent findings and ideas and to continue the tradition of EuCO-CC conferences (Nancy 1994, Lisbon 1997, Budapest 2000, Assisi 2002, La Londe le Maures 2006, Tale 2006, Venetia 2008, Lund 2010, Sopron 2013, Fulda 2015).
Outstanding keynote speakers will outline recent trends in vary fields of interest. The scientific program will be completed by exhibitors presenting latest methods and applications in the field of computational chemistry.
The next Joint Iberian Meeting on Atomic and Molecular Physics IBER 2017 will take place in Barcelona, Spain from September 12 to 14, 2017.
IBER is the biannual conference organised jointly by the Atomic and Molecular Physics Specialised Group (GEFAM) of the Spanish Royal Society of Physics and the Portuguese Society of Physics.
The main purpose of this series of IBER conferences is to bring together scientists of Iberian community dedicated to Atomic and Molecular Physics and related areas of to facilitate the interaction and exchange of knowledge between their research groups. Researchers and scientists from all over Europe and the world are invited to attend this conference and share knowledge. The conference will be structured in three days with plenary lectures, invited lectures, oral presentations and a poster session.
For detailed information and registration please visit:
Specific topics of IBER include:
- Quantum Physics and Chemistry
- Experimental Techniques and Applied Physics
- Atomic and Molecular Spectroscopy and Structure
- Biomolecules and Biophysics
- Clusters, Nanoparticles
- Surfaces and Condensed Phases
- Dynamical Studies of Elementary Processes
- Femtochemistry and Laser Control
List of Confirmed Speakers
M. Alcamí, U. Autónoma de Madrid (Spain)
V. Aquilanti, U. de Perugia (Italy)
A. Bergeat, U. de Bordeaux (France)
F. Calegari, U. of Hamburg (Germany)
M.L. Carvalho, U. Nova Lisboa (Portugal)
D. Clary, Oxford University (UK)
B. Costa Cabral, U. Lisboa (Portugal)
L.M. Frutos, U. de Alcalá de Henares (Spain)
P. García Jambrina, U. Complutense de Madrid (Spain)
P. Jönsson, Malmö högskola, Malmö (Sweden)
U. Manthe. Universität Bielfeld (Germany)
T. Martinez, Stanford University (USA)
B. Maté, Consejo Superior de Investigaciones Científicas (Spain)
E. Narevicius, Weizmann Institute (Israel)
J. A. Paixão, U. de Coimbra, (Portugal)
M. J. Ramos, U. de Porto (Portugal)
O. Roncero, Consejo Superior de Investigaciones Científicas (Spain)
D. Shalashilin, U. of Leeds (UK)
S. Willitchs, U. Basel (Switzerland)
Registration is now open. The deadline for early-bird registration is July 6th while abstract submission will be open until June 9th. Please mark your calendars.
Approximately 10-12 contributions will be selected for oral communications. The participation of young researchers and students is particularly welcome.
We looking forward to welcoming in Barcelona!
With best regards
The Organising Committee at Universitat de Barcelona,
Antonio Aguilar Navarro (Chairman)
Margarita Albertí Wirsing
Miguel González Pérez
Fermín Huarte-Larrañaga (Secretary)
Estefanía López Marne
Josep Maria Lucas
Departament de Ciència de Materials i Química Física
Secció de Química Física
Institut de Química Teòrica i Computacional de la UB (IQTCUB)
Universitat de Barcelona

Molecular reaction dynamics has become an integral part of modern chemistry and is set to become a cornerstone for much of the natural sciences. Molecular reaction dynamics is the study of elementary processes and the means of probing them, understanding them, and controlling them. It can be applied to reactions in solution and to reactions on surfaces, exploring the elementary steps in catalysis. Nowadays chemistry requires a molecular level understanding of the reactivity. Moreover, chemical kinetics in an old discipline (born in 1850) that deals with the rates of chemical reaction and how these rates depend on factors such as concentration and temperature. Although it in principle presents a macroscopic point of view, this can be directly related with the molecular point of view. Thus, kinetic or dynamic Monte Carlo simulations allow us to bridge the gap of many orders of magnitude in length and time scales between the processes on the molecular scale and the macroscopic kinetics.
The present school is open to European master and PhD students and postdocs with interest to understand chemical reactions at molecular level and to apply the theoretical and computational chemistry to this matter. First-year students of the Erasmus+ Master European in Theoretical Chemistry and Molecular Modelling will attend to this school as a part of their mandatory subjects although second-year students of this Master but from the rest of Europe it is expected that can attend too. Last year (2017) we made by first time this school and it was very successful.
The school will cover the principal aspects of the kinetics and dynamics of chemical reactions, centred mainly in the theoretical and computational approaches, although some experimental techniques will also be explained.
Registration deadline: March 9, 2018
More Information at https://www.cecam.org/workshop-1529.html

Photoinitiated processes are not only important for understanding natural phenomena but they also play an undeniable role in the booming fields of renewable energy, material design and medicine. Excited state processes have traditionally been explained from a static point of view, delivering in some cases a biased, incorrect or even incomplete description of the former. The simulation of the dynamics of such processes is therefore fundamental for the quest to understand the chemical and physical mechanisms.
The purpose of this school is to introduce its participants to state-of-the-art methodologies for the simulation of the dynamics of processes in the excited state, following the evolution in time of photoinitiated reactions, one of the priority topics of this call.
The school will be focused in simulating the dynamics of complex molecules. Electronic ab initio or TD-DFT methods would be sketched for obtaining the electronic wavefunctions or densities, that would be afterwards quantum-mechanically propagated. Moreover, several approaches for the treatment of the nuclei will be also provided, from full quantum dynamics to mixed quantum-classical dynamics.
The course is directed at PhD students, and young researchers, beginners in the field, working in theoretical chemistry and molecular physics.
The tutorial will be organized in 6 theoretical and 6 practical sessions, the latter taking place in the computer lab. The theoretical sessions will be of 3 hours and practical sessions will last 3 hours. The school will comprise 3 didactic blocks.
The first block will have an introductory character and will offer an overview of the field. The following block will focus on mono- and multi-configurational electronic structure methods for the description of excited states. The last block will cover dynamics methodologies. See description below. The school will end with a comprehensive overview (2 hours) of state-of-the-art applications, limitations, suitabilities, future perspectives and challenges of the different static and dynamical approaches described in the school.
More information: https://www.cecam.org/workshop-1542.html

The recent development of novel light sources like x-ray free-electron lasers and table-top lasers for high-harmonic generation, which are capable of delivering controllable sequences of intense sub-femtosecond ionizing pulses, has opened the way to monitor and control electron dynamics in atoms and molecules at its natural time scale, the attosecond (Chem. Rev. 2017, DOI: 10.1021/acs.chemrev.6b00453). The description of the coherent superposition of electronic continuum states that the interaction of such pulses with molecules generates goes beyond the capabilities of standard quantum-chemistry packages, which have been designed to describe the lowest bound states. Furthermore, stationary state-based pictures based on lowest-order perturbation theory are, in most cases, inapplicable. The purpose of this school is to introduce state-of-the-art ab-initio, hybrid and TDDFT numerical methods that can cope with ultra-fast dynamics in the electronic continuum of molecules, with an emphasis on unbound states in strong-fields and on the need to go beyond single-active-electron models to properly account for electron correlation. The course is directed to advanced master students, PhD students and young post-doctoral researchers in atomic and molecular physics, theoretical chemistry and applied mathematics, with an interest in developing new software for coherent control of electronic dynamics in systems of chemical interest.
The tutorial will be organized in 5 theoretical sessions and 4 practical sessions in the computer lab. Both theoretical and practical sessions will be of 4 hours. The school comprises four didactic blocks. The first block has an introductory character. It offers an overview of the field and a tutorial on strong field physics. The following three blocks focus on systems of increasing complexity and will be devoted to the description and use of new computational methods for fast time evolution in correlated systems in non-perturbative conditions (see description below). The school will end with a comprehensive overview of state-of-the-art results in attosecond pump-probe and strong field molecular science obtained with ab initio “exact” simulations in small systems, on the one side, and with TD-DFT effective-field simulations, capable of coping with larger systems, on the other side. The future perspectives, challenges and mutual interaction of these two complementary approaches will be discussed.
More information: https://www.cecam.org/workshop-1552.html