Expert WG2 Meeting on Biomolecules @ CePTOR congress center
Apr 27 @ 3:00 pm – Apr 30 @ 12:00 pm
Expert WG2 Meeting on Biomolecules @ CePTOR congress center | Vojvodina | Serbia

The 2nd meeting organized in the framework of Working Group 2 of COST Action CM1204 (XUV/X-ray light and fast ions for ultrafast chemistry) will take place in Fruska gora (Serbia) from April 27th to April 30th, 2015. It will be an expert meeting centered on biomolecules.

Deadline for registration is March 20th, 2015.
Deadline for abstract submission is April 1st, 2014.

More information can be found on the meeting website:

The participation of a limited number of XLIC participants and speakers will be supported with the Action budget. Participants entitled for reimbursement should have been informally notified about their status.

By the end of March, all participants will receive an official invitation to the meeting confirming their eligibility status and highligting some of the COST rules for reimbursement which should be carefully examined before incurring any expense in:

Since the budget allocated for the meeting is limited, it is highly reccomended keeping the claims for meals and accomodation at the actual level of expensiture during the meeting (240 €/210 € per person for the whole meeting). Nevertheless. in compliance with COST rules, this subsistence expenses will be reimbursed on the basis of flat rates (no need to show invoices). The applicable flat rates for this meeting, as approved by XLIC Management Committee, are 80 EUR for accommodation and 0 EUR for meals.

For travel expenses actual costs can be claimed on the basis of the receipts provided. (Any restriction applying to travel expenses will be notified to each participant entitled for reimbursement)

IMPORTANT: Participants selected for reimbursement are kindly asked to keep their expenses as low as possible to ensure a wide distribution of the Action budget.

The submission of claims shall be done after the meeting, but, for any non-regular expense or doubt you may have, please, better ask in advance ( E.g. fligths departure/arrivals from/to places other than where the eligible participant is working/residing, extra meals, nights, taxi expenses, etc. shall not be reimbursed if permission is not requested before the meeting.

@ Harnack House
Jul 12 – Jul 23 all-day

A 10-days Hands-on Tutorial Workshop on Density-functional theory and beyond: First-principles simulations of molecules and materials will be held on July 13 to 23, 2015, at Harnack House Berlin (

This ten-day Hands-On Tutorial Workshop introduces the basic and current developments in electronic structure theory for an intended audience of researchers entering the field. Morning lectures on the most important topics will be given by a field of international experts, complemented by afternoon hands-on sessions – practical exercises with computers – to deepen selected topics. For example, we cover:
* Density-functional theory (DFT) and quantum chemical approaches
* The most important numerical implementations
* Advanced functionals (capabilities and limits!)
* Electronic structure theory “beyond traditional Kohn-Sham DFT” (including GW, TDDFT, many-body formalisms)
* Ab initio molecular dynamics and nuclear quantum effects
* Multiscale approaches and statistical learning based on first principles
… and a wide range of other topics.
The application and poster-abstract submission interfaces for the workshop are now open until March 31. For space reasons, the number of participants will be limited to approximately 70. Acceptance decisions will be made within 2 weeks after the deadline (April 15, 2015).

Limited funds for financial support are available.
See the web page for details:

2nd XLIC WG2 meeting & EPoLM-2 @ AlbaNova University Center
Apr 11 – Apr 15 all-day
2nd XLIC WG2 meeting & EPoLM-2 @ AlbaNova University Center | Stockholm | Stockholm County | Sweden


The topic of the 2nd meeting on the Energetic Processing of Large Molecules (EPoLM-2) is Carbon- and hydrocarbon molecules: from the lab to space. Building on the success of the first meeting at the Lorentz Center in Leiden in May 2015, we aim to bring together scientists from a broad range of research fields (physics, chemistry, astrophysics, and astronomy) to exchange expertise and work together on joint projects. Here, the focus will be on the latest laboratory results on mechanisms and rates for the formation and destruction of carbon and hydrocarbon molecules under space-like conditions. The aim of the meeting is to combine this knowledge with new observations and astrophysical models.

The 2nd meeting for the members of the XLIC Working Group 2 is organized in the framework of the COST Action CM1204 (XUV/X-ray light and fast ions for ultrafast chemistry). Working Group 2 is concerned with the stability of highly excited and highly charged molecules in the gas phase and their reactivity: interaction with other molecules and formation of new species through isomerization and/or fragmentation.

 Conference site

The meetings will be held during 11-13 and 13-15 April 2016 in Stockholm (Sweden), with one common day (April 13). The conference venue is the AlbaNova University Center, which is located close to the city center and is easily accessed by public transport.


Registration: 29 February 2016
Abstract submission: 29 February 2016
Note that the registration may be closed earlier due to the capacity of the venue


Speakers invited to attend the second XLIC WG2 meeting (and some selected participants) can be reimbursed for their travel and subsistence expenses in accordance to COST rules. Please, note that no support to attend the EPoLM-2 meeting will be provided by XLIC Action.

Before incurring on any expense, please check COST Vademecum pages 20-24. In particular, please,
– check the supporting documents you should provide in case you are travelling to and from countries other than that where the approved meeting is being held and the country where you are residing. A proper justification and all the documents detailed in page 22 of COST Vademecum should be provided when sending the claim. If not, the claim will be rejected.
– take note on the current definition on Local transport expenses on page 24 of COST Vademecum: now, you should provide tickets/invoices for any trip occurring within the same country if the claim exceed 25 EUR.

Participants are kindly asked to keep their expenses as low as possible and ask only for the amounts they have spent, even if flat rates allow for a higher contribution, so the Action budget can be used to support more activities/participants. Thank you in advance!

Organizing committee

Henrik Cederquist (Stockholm University), Henning Zettergren (Stockholm University), Henning Schmidt (Stockholm University), Ronnie Hoekstra (University of Groningen), and Alexander Tielens (Leiden Observatory).

Static and Dynamic methods for the study of photoinitiated processes @ CECAM-ES (ZCAM)
Apr 18 – Apr 22 all-day
Static and Dynamic methods for the study of photoinitiated processes @ CECAM-ES (ZCAM) | Zaragoza | Aragón | Spain

The tutorial will be organized in 4 theoretical and 5 practical sessions, the latter taking place in the computer lab. The theoretical sessions will be of 4.5 hours and practical sessions will last 4 hours. The school will comprise 3 didactic blocks.
The first block will have an introductory character and will offer an overview of the field. The following block will focus on mono- and multi-configurational electronic structure methods for the description of excited states. The last block will cover dynamics methodologies. (see description below). The school will end with a comprehensive overview (2 hours) of state-of-the-art applications, limitations, suitabilities, future perspectives and challenges of the different static and dynamical approaches described in the school.

1st Block (6 hours): Overview of modern electronic and vibrational photochemistry. Born-Oppenheimer approximation. Ground and excited potential energy surfaces topology and light-matter interaction. Building bridges between experiment and theory: theoretical approaches to simulate steady state and transient absorption spectra. Excited state deactivation processes.

2nd Block (18 hours): Quantum Chemical Calculations of Excited States: Mono- and Multiconfigurational Methods. CASSCF and RASSCF methods. Choice of the active space. Single vs. state-average calculations. Basis sets considerations. Introducing dynamical correlation: the CASPT2 method. CASPT2 problems and solutions. DFT. Runge-Gross theorems. Linear response TDDFT. Propagation of the electronic density. Spectra calculation. Approximation of xc-functionals. This block includes 3 practical sessions of 4 hours each, comprising introductions to MOLCAS and OCTOPUS codes, simulation of absorption spectra and exploration of the topography of potential energy surfaces (location of stationary points and surface crossings).

3rd Block (14 hours): Wave Packet propagations and semiclassical dynamics. Time-evolution operator, propagation. Relaxation method, filtering method. Interaction with an electric field. Correlation functions, spectra and eigenfunctions. Pump-probe spectroscopy and control, including an introduction to optimal control theory and local control. Born-Oppenheimer and Ehrenfest dynamics. Nonadiabatic dynamics, Tully’s surface hopping. This block includes 2 practical sessions of 4 hours each, introducing quantum and semiclassical dynamics techniques.


Theoretical Solid State Chemistry: theory, modelling, and simulation @ CECAM-ES (ZCAM)
Apr 25 – Apr 29 all-day
Theoretical Solid State Chemistry: theory, modelling, and simulation @ CECAM-ES (ZCAM) | Zaragoza | Aragón | Spain

The tutorial will cover the fundamentals and the practical use of state-of-the-art codes for the calculation of the electronic structure of bulk solids, surfaces, and defects and impurities in solids. This includes applications in thermodynamical properties, phase transitions, temperature and pressure effects, magnetic and spectroscopic properties, and surface properties including reactivity of and at surfaces. The influence of structural vacancies both in bulk and at surfaces will be addressed as an important topic influencing in a significant way the properties of different materials. The chemical reactivity of surfaces will be the subject of one of the lectures of the course, with a full discussion of different aspects of the modelling of the CO oxidation in a Y-doped TiO2 supported gold nanoparticles catalyst. That is, in summary, the content of the main theoretical and practical sessions, grouped into 8 and 4 subjects, respectively.

(Theo-1) Symmetry (Pablo García Fernández)
Summary of basic concepts. Space groups. Tensor quantities. Crystal strain. Bloch theorem. The symmetry of the wavefunction under periodic boundary conditions.

(Theo-2) Electronic structure. (Cristina Díaz)
Cluster and periodic models. Atomistic models. Kohn-Sham equations and DFT methodologies. Electronic structure calculations. Phonons and crystal searching.

(Theo-3) Thermodynamic properties. (Cristina Díaz)
Static models. Equation of state of solids. Phase transitions. Mechanisms and kinetics of phase transitions. Thermal effects.

(Theo-4) Chemical bonding and microscopic approach. (Julia Contreras)
Topologies of scalar fields in crystals. Electron density, electron localization function and reduced density gradient chemical functions. Chemical origin of compresibility. Chemical bonding reconstruction along a phase transition.

(Theo-5) Ab initio simulation of the structure, thermodynamic properties and reactivity in surfaces. (Antonio Márquez)
Computational models in Surface Science. Structure of surfaces: Tasker’s classification of ionic surfaces. Relaxation, rumpling, and reconstruction of surfaces. Surface energies. Surface defects: O vacancies in metal oxides. Adsorption at surfaces. Case studies: organic molecules and transition metal atoms at oxide surfaces. Reactivity at surfaces: organic molecules at simple surfaces. Role of point defects. Case study: CO oxidation on an oxide supported metal catalyst. Case study: highly correlated metal oxides: the case of ceria.

(Theo-6) Ab initio simulation of magnetic and optical properties, and structural instabilities of solids. (Miguel Moreno)
Introduction: Role of impurities in crystalline solids. Impurities in insulators. Localization. What are the calculations useful for? Substitutional Transition Metal Impurities in insulators: Description of states. Study of Model Systems: interatomic distances and colour. The colour of gemstones containing Cr3+. Static Jahn-Teller effect: description. Static Jahn-Teller effect: experimental evidence. Insight into the Jahn-Teller effect. Off centre motion of impurities: evidence and characteristics. Origin of the off centre distortion. Softening around impurities.

(Theo-7) Magnetic interactions in Molecules and Solids: Basic concepts and Spin Hamiltonians (Coen de Graaf)
Spin Hamiltonians. Effective Hamiltonian theory. Magnetism in condensed matter. Spin waves for ferromagnets. Antiferromagnetic lattices. Electron transport. Quantum Chemical approach to solid state magnetism. Four center interactions in cuprates.

(Theo-8) Magnetic anisotropy, Double exchange and spin wave theory (Coen de Graaf)


Mar 19 – Mar 28 all-day

The International school on “The Frontiers of Attosecond and Ultrafast X-ray Science” will be held from 19th to 28th March 2017 in Erice, Sicily, Italy.

The primary objective of this new school is to educate the next generation of scientists who will impact the future of attosecond and ultrafast x-ray science. We anticipate that the school will meet on a regular basis every two years and become a foundation for the ultrafast community. Consequently, the main topics of the course are the following: (i) attosecond science and technology, devoted to the generation and application of attosecond pulses to the investigation of electronic dynamics in atoms, molecules, nanostructures and condensed phases; (ii) fundamentals, methods and applications of free electron lasers, synchrotron radiation, ion collisions in atomic and molecular science. Lectures will cover current developments in theory and experiments but are also intended to give the basics of the field.

Please note that, PhD students and post-docs willing to attend the school can apply for scholarships (deadline 30 January 2017). For more details see:

The school co-organised by XLIC COST Action and sponsored by Politecnico di Milano, Italian Ministry of Education and Scientific Research, Sicilian Regional Parliament, ELI-ALPS and Ettore Majorana Foundation and Centre for Scientific Culture.

The organizers,

Louis Di Mauro, Alicja Domaracka, Mauro Nisoli and  Sergio Martellucci

CECAM DFT School, June 12-16, 2017, Lausanne @ CECAM Headquarters
Jun 12 – Jun 16 all-day

Where: CECAM Headquarters, Lausanne, Switzerland
When: June 12-16, 2017
Application deadline: February 28, 2017

This is a singular opportunity for students and postdocs. The school will be very similar to the previous one at IPAM last year ( with a similar line-up of excellent lecturers. We also provide limited support for student accommodation.

Scientific overview:

Last year, at least 30,000 scientific papers reported the results of DFT calculations. Many workshops and schools teach how to run a specific code. The purpose of this school is to teach the theory behind DFT. Lectures will be pedagogical and range from fundamentals to the latest approximations. The school is primarily targeted at junior researchers (Ph.D. students and postdocs) who are currently running DFT calculations and/or developing DFT or are interested in learning more about DFT. Internationally renowned experts in DFT will provide a thorough training in the fundamental theory through lectures and pedagogical research talks that connect themes of the lectures to the lecturers’ own cutting-edge research.

Confirmed speakers:

Mel Levy (Tulane University), John Perdew (Temple University), Hardy Gross (Max Planck Institute of Microstructure Physics) Weitao Yang (Duke University) Kieron Burke (University of California, Irvine) Leeor Kronik (Weizmann Institute) Neepa Maitra (Hunter College, CUNY) Adrienn Ruzsinszky (Temple University) Adam Wasserman (Purdue University)


Fill out the application form on the school web site. Submit one letter of recommendation from your academic advisor (via email to Participants are strongly encouraged to present a poster. Applications arriving by February 28, 2017 will receive full consideration.

Organizing Committee:

Attila Cangi (Sandia National Laboratories) Kieron Burke (University of California, Irvine) Hardy Gross (Max Planck Institute of Microstructure Physics)

ISIAC and (e,2e)-pol satellites to ICPEAC
Jul 23 – Aug 4 all-day

The two ICPEAC satellite meetings:

still welcome abstract submissions until the end of April. The confirmed invited speakers are available at the respective Scientific Program links.

We look forward to your participation,

Alisher Kadyrov, Chair of ISIAC

Igor Bray, Chair of (e,2e)-pol

11EUCO-TCC @ Institut d’Estudis Catalans (Institute for Catalan Studies, IEC)
Sep 4 – Sep 7 all-day
11EUCO-TCC @  Institut d’Estudis Catalans (Institute for Catalan Studies, IEC) | Barcelona | Catalonia | Spain

The local organizing committee of the Catalan Chemical Society (SCQ) cordially invites you, on behalf of the Division of Computational and Theoretical Chemistry (DCTC) of the European Association of Chemical and Molecular Sciences (EuCheMS), to participate at the 11th European Conference on Theoretical and Computational Chemistry, September 4 – September 7, 2017, in Barcelona.

The conference will reflect recent advances, developments and trends in the field and its impact on related molecular sciences and technology. EuCO-TCC 2017 will provide a unique information and communication platform and will cover a wide range of subjects related to computational chemistry, theoretical chemistry, material sciences, biology and drug design, and from fundamental academic research to industrial applications.

This invitation is addressed to scientists in academia, industry and in governmental institutions. You are all warmly welcomed to share your most recent findings and ideas and to continue the tradition of EuCO-CC conferences (Nancy 1994, Lisbon 1997, Budapest 2000, Assisi 2002, La Londe le Maures 2006, Tale 2006, Venetia 2008, Lund 2010, Sopron 2013, Fulda 2015).

Outstanding keynote speakers will outline recent trends in vary fields of interest. The scientific program will be completed by exhibitors presenting latest methods and applications in the field of computational chemistry.

CECAM School: New Computational Methods for Attosecond Molecular Processes @ CECAM-ES
May 21 – May 25 all-day
CECAM School: New Computational Methods for Attosecond Molecular Processes @ CECAM-ES | Zaragoza | Aragon | Spain

The recent development of novel light sources like x-ray free-electron lasers and table-top lasers for high-harmonic generation, which are capable of delivering controllable sequences of intense sub-femtosecond ionizing pulses, has opened the way to monitor and control electron dynamics in atoms and molecules at its natural time scale, the attosecond (Chem. Rev. 2017, DOI: 10.1021/acs.chemrev.6b00453). The description of the coherent superposition of electronic continuum states that the interaction of such pulses with molecules generates goes beyond the capabilities of standard quantum-chemistry packages, which have been designed to describe the lowest bound states. Furthermore, stationary state-based pictures based on lowest-order perturbation theory are, in most cases, inapplicable. The purpose of this school is to introduce state-of-the-art ab-initio, hybrid and TDDFT numerical methods that can cope with ultra-fast dynamics in the electronic continuum of molecules, with an emphasis on unbound states in strong-fields and on the need to go beyond single-active-electron models to properly account for electron correlation. The course is directed to advanced master students, PhD students and young post-doctoral researchers in atomic and molecular physics, theoretical chemistry and applied mathematics, with an interest in developing new software for coherent control of electronic dynamics in systems of chemical interest.

The tutorial will be organized in 5 theoretical sessions and 4 practical sessions in the computer lab. Both theoretical and practical sessions will be of 4 hours. The school comprises four didactic blocks. The first block has an introductory character. It offers an overview of the field and a tutorial on strong field physics. The following three blocks focus on systems of increasing complexity and will be devoted to the description and use of new computational methods for fast time evolution in correlated systems in non-perturbative conditions (see description below). The school will end with a comprehensive overview of state-of-the-art results in attosecond pump-probe and strong field molecular science obtained with ab initio “exact” simulations in small systems, on the one side, and with TD-DFT effective-field simulations, capable of coping with larger systems, on the other side. The future perspectives, challenges and mutual interaction of these two complementary approaches will be discussed.

More information: