Events
- Categories
-
Tags
2e AMO Physics attosecond molecular processes Biomolecules CECAM CM1405 Computational Chemistry Computations Conference Control of Chemical Reactivity COST Action CM1405 DESY DFT dynamics Dynamics of Chemical Reactions e ECI ELI ESPA2018 ESR Expert Meeting Faraday Discussions FEL Femtochemistry femtosecond pulses Final Meeting GEFAM IBER2017 ICPEAC imaging Interstellar Molecules ISIAC IYL2015 Manuel Yañez meeting Molecular and Ionic Clusters Molecular Beams molecular excited states MOLIM networking activities News on-equilibrium quantum processes Otilia Mo PAH Photoinitiated processes Photoionization Quantum dynamics RES rontiers in attosecond theory RSEF School Solid state chemistry Spectroscopy statistics synergy TCCM Theoretical Chemistry Theoretical Spectroscopy Training School Ultrafast ultrafast dynamics Ultrafast electron dynamics Ultrafast imaging Ultrafast X-Ray ultraslow dynamics WATOC wg1 WG2 WG3 Workshop XFEL YSF Zewail
First XLIC Training School will take place in Zaragoza, at the premises of Z-CAM (http://www.z-cam.es/). It will be organized in two modules of one week each. Attendees can participate in one or both of them.
- Module 1. March 9-13, 2015
Molecular Excited States (Download tentative program) - Module 2. March 16-20, 2015
New Computational Methods for Attosecond Molecular Processes (Download tentative program)
TRAINING PROGRAM: Contents of the courses and list of trainers can be checked, for each module, in the documents linked above. Nevertheless, interested participants are encouraged to check for updates on each module webpage .
ACCOMMODATION: Local organizers have arranged accommodation for all registered participants in the same hotels (Apartamentos Los Sitios and Apartamentos Los Girasoles), where apartments (multiple occupancy with individual rooms) with a kitchen area are offered during the duration of the schools (arriving on Sunday and leaving on Friday). Participats attending both modules can also stay in the apartment during the weekend.
If you are interested in this option, please, contact local organisers as soon as possible to confirm booking details. Payment should be done directly by each participant before leaving.
MEALS: Lunches during training days will be covered for all participants. Dinner and breakfast will not be included.
FEES: There are no registration fees.
FINANCIAL SUPPORT: XLIC Action will offer grants to partially cover the participation of young researchers involved in the Action. Each participant will receive a notification with information on the amount granted. of grants and amount will depend on the number of requests for funding.
REGISTRATION is now closed. Participants can check the status of their application at CECAM website (separately for each module), using their CECAM account.
REIMBURSEMENT: Each participant should pay his/her own expenses to the Hotel before leaving. Those participants selected for funding will receive a letter indicating the fixed amount granted. After the event, reimbursement will be done subject to the submission of a payment request form and the effective attendance to the school. No receipts will be asked for.
LOCATION: The activities will take place at the R+D Building (BIFI) in the campus of the University of Zaragoza in the north of the city (ZCAM CONFERENCE BUILDING: Campus Río Ebro – Edificio I+D; C/Mariano Esquillor s/n. 50018 Zaragoza)
HOW TO REACH ZARAGOZA: You can arrive in Zaragoza by plane, train, bus and car. If you come from abroad and you land at either Madrid or Barcelona airports, then the train or the bus are usually the best options for the last part of the trip up to Zaragoza.
- By plane: The airport is situated 9 km from the city. At present, there are regular flights to Frankfurt (weekdays), Rome, London, Milan and Lisbon and domestic flights to Madrid and Barcelona. Connections from the airport to the city are by bus and taxi. You can make a flight search in the web sites of the companies that operate with the Zaragoza airport: Iberia, Air Europa, and Ryanair (low cost company).
- By train: Zaragoza has a new railway station (Estación de Delicias), with a high‐speed connection to Madrid and Barcelona (AVE train). The railway station is at the same place as bus and taxi stops, and car rental services. Zaragoza is also connected by train to other major Spanish cities such as Valencia, Granada, Sevilla and Málaga. Timetable information can be obtained at the Spanish Railway Company web site: Renfe.
- By bus: Zaragoza is connected by bus to the main Spanish cities. You can search the routes and timetables in the web site of the Spanish bus company ALSA.
- By car: Zaragoza has an excellent communication network, and is linked to the North of Spain: through a motor way to Bilbao (A‐68) and Barcelona (A‐2), and the Aragón highway connecting to Madrid (N‐II).
The CECAM School on: “Theoretical Spectroscopy Lectures: theory and codes” reaches the 6th edition and takes place from 18th to 22th of May, 2015 at the CECAM-HQ-EPFL, Lausanne, Switzerland.
Electronic excitations are probed by experimental techniques such as optical absorption, EELS and photo-emission (direct or inverse). From the theory point of view, excitations and excited state properties are out of the reach of density-functional theory (DFT), which is a ground-state theory. In the last twenty years other ab-initio theories and frameworks, which are able to describe electronic excitations and spectroscopy, have become more and more used: time-dependent density-functional theory (TDDFT) and many-body perturbation theory (MBPT) or Green’s function theory (GW approximation and Bethe-Salpeter equation BSE). In fact, computational solutions and codes have been developed in order to implement these theories and to provide tools to calculate excited state properties.The present school focuses on these points, covering theoretical, practical, and also numerical aspects of TDDFT and MBPT, and codes implementing them (ABINIT, DP, EXC).
The presentation of the theory will be followed by practical classes and hands-on tutorials. At the end of the school, students will have sufficient working knowledge to pursue their projects at their home institution. The participants are expected to have a fair knowledge of DFT prior to the school (see Ref. 1, given in the school’s website) and to be familiar with one plane-wave pseudopotential based software.
Indeed, although at the beginning of the school, we will make sure that the DFT level of all participants is enough in this respect and provide the needed complementary information and training, the purpose of the school is to go beyond DFT, with hands-on exercices based on plane-wave implementations.
The deadline for application is on 15 April 2015, but giving the limited number of places (around 25) many applications will be considered even before the deadline. Especially student candidates coming from outside EU are encouraged to register soon: an answer to them will be given as soon as possible for VISA and traveling purposes.
In order to apply for the school, please go to: http://www.cecam.org/workshop-1136.html
1st MOLIM Training School (MTS1) “Molecular Potentials and Dynamics: The Starting Journey”, supported by the COST program Molecules in Motion (MOLIM) (http://cost-molim.eu), will be held from March 30 to April 3, 2016, in Curia, Portugal. The scientific program of MTS1 focuses both on experimental and theoretical studies of molecular interactions, collision dynamics, spectroscopy, and related fields. MTS1 involves 11 invited trainers from 8 countries, who were asked to summarize at an introductory post-graduate level the topics of their presentations, with the objective of revealing the basic knowledge for the trainees to understand the current thinking of leading research within their field. It is hoped that their authoritative contributions presented at MTS1 will also appeal to non-specialists through their clear and broad introductions to the field as well as references to the accessible literature. MTS1 will comprise contributions covering a wide range of topics, from electronic and ro-vibrational structure theory of molecules and clusters to dynamics of elastic, inelastic and reactive encounters between atoms, molecules, ions, clusters, and surfaces.
It will also have a section for the trainees to report their own ongoing work via presentation of posters at the end of every day during the TS.
The invited speakers include:
S. Adhikari (Calcutta – India)
J. L. Alonso (Valladolid – Spain)
A. G. Császár (Budapest – Hungary)
R. Fausto (Coimbra – Portugal)
M. Hochlaf (Paris – France)
D. Per Jensen (Wuppertal – Germany)
I. Kleiner (Paris – France)
T. J. Martinez (Stanford – CA, USA)
A. J. C. Varandas (Portugal)
W.-T. Yang (Durham – NC, USA)
G. Zerbi (Milano, Italy)
The number of trainees is limited to 74 according to the following distribution:
30 trainees (with full accommodation and local travelling support from COST)
16 trainees (with partial support from COST; 8 meals)
28 (at maximum) trainees not supported by COST.
Detailed information can be found at http://www.uc.pt/go/molim2016 with pre-registration open. Grant applications and poster submissions will open soon.
Looking forward to see you in Curia
A.J.C. Varandas and R. Fausto

The International school on “The Frontiers of Attosecond and Ultrafast X-ray Science” will be held from 19th to 28th March 2017 in Erice, Sicily, Italy.
The primary objective of this new school is to educate the next generation of scientists who will impact the future of attosecond and ultrafast x-ray science. We anticipate that the school will meet on a regular basis every two years and become a foundation for the ultrafast community. Consequently, the main topics of the course are the following: (i) attosecond science and technology, devoted to the generation and application of attosecond pulses to the investigation of electronic dynamics in atoms, molecules, nanostructures and condensed phases; (ii) fundamentals, methods and applications of free electron lasers, synchrotron radiation, ion collisions in atomic and molecular science. Lectures will cover current developments in theory and experiments but are also intended to give the basics of the field.
Please note that, PhD students and post-docs willing to attend the school can apply for scholarships (deadline 30 January 2017). For more details see: http://www.erice-attosecond.it/registration
The school co-organised by XLIC COST Action and sponsored by Politecnico di Milano, Italian Ministry of Education and Scientific Research, Sicilian Regional Parliament, ELI-ALPS and Ettore Majorana Foundation and Centre for Scientific Culture.
The organizers,
Louis Di Mauro, Alicja Domaracka, Mauro Nisoli and Sergio Martellucci

Photoinitiated processes are not only important for understanding natural phenomena but they also play an undeniable role in the booming fields of renewable energy, material design and medicine. Excited state processes have traditionally been explained from a static point of view, delivering in some cases a biased, incorrect or even incomplete description of the former. The simulation of the dynamics of such processes is therefore fundamental for the quest to understand the chemical and physical mechanisms.
The purpose of this school is to introduce its participants to state-of-the-art methodologies for the simulation of the dynamics of processes in the excited state, following the evolution in time of photoinitiated reactions, one of the priority topics of this call.
The school will be focused in simulating the dynamics of complex molecules. Electronic ab initio or TD-DFT methods would be sketched for obtaining the electronic wavefunctions or densities, that would be afterwards quantum-mechanically propagated. Moreover, several approaches for the treatment of the nuclei will be also provided, from full quantum dynamics to mixed quantum-classical dynamics.
The course is directed at PhD students, and young researchers, beginners in the field, working in theoretical chemistry and molecular physics.
More information at: https://www.cecam.org/workshop-1542.html
Where: CECAM Headquarters, Lausanne, Switzerland
When: June 12-16, 2017
https://www.cecam.org/workshop-1326.html
Application deadline: February 28, 2017
This is a singular opportunity for students and postdocs. The school will be very similar to the previous one at IPAM last year (http://www.ipam.ucla.edu/programs/summer-schools/putting-the-theory-back-in-density-functional-theory/) with a similar line-up of excellent lecturers. We also provide limited support for student accommodation.
Scientific overview:
Last year, at least 30,000 scientific papers reported the results of DFT calculations. Many workshops and schools teach how to run a specific code. The purpose of this school is to teach the theory behind DFT. Lectures will be pedagogical and range from fundamentals to the latest approximations. The school is primarily targeted at junior researchers (Ph.D. students and postdocs) who are currently running DFT calculations and/or developing DFT or are interested in learning more about DFT. Internationally renowned experts in DFT will provide a thorough training in the fundamental theory through lectures and pedagogical research talks that connect themes of the lectures to the lecturers’ own cutting-edge research.
Confirmed speakers:
Mel Levy (Tulane University), John Perdew (Temple University), Hardy Gross (Max Planck Institute of Microstructure Physics) Weitao Yang (Duke University) Kieron Burke (University of California, Irvine) Leeor Kronik (Weizmann Institute) Neepa Maitra (Hunter College, CUNY) Adrienn Ruzsinszky (Temple University) Adam Wasserman (Purdue University)
Application:
Fill out the application form on the school web site. Submit one letter of recommendation from your academic advisor (via email to acangi@mpi-halle.mpg.de). Participants are strongly encouraged to present a poster. Applications arriving by February 28, 2017 will receive full consideration.
Organizing Committee:
Attila Cangi (Sandia National Laboratories) Kieron Burke (University of California, Irvine) Hardy Gross (Max Planck Institute of Microstructure Physics)

Molecular reaction dynamics has become an integral part of modern chemistry and is set to become a cornerstone for much of the natural sciences. Molecular reaction dynamics is the study of elementary processes and the means of probing them, understanding them, and controlling them. It can be applied to reactions in solution and to reactions on surfaces, exploring the elementary steps in catalysis. Nowadays chemistry requires a molecular level understanding of the reactivity. Moreover, chemical kinetics in an old discipline (born in 1850) that deals with the rates of chemical reaction and how these rates depend on factors such as concentration and temperature. Although it in principle presents a macroscopic point of view, this can be directly related with the molecular point of view. Thus, kinetic or dynamic Monte Carlo simulations allow us to bridge the gap of many orders of magnitude in length and time scales between the processes on the molecular scale and the macroscopic kinetics.
The present school is open to European master and PhD students and postdocs with interest to understand chemical reactions at molecular level and to apply the theoretical and computational chemistry to this matter. First-year students of the Erasmus+ Master European in Theoretical Chemistry and Molecular Modelling will attend to this school as a part of their mandatory subjects although second-year students of this Master but from the rest of Europe it is expected that can attend too. Last year (2017) we made by first time this school and it was very successful.
The school will cover the principal aspects of the kinetics and dynamics of chemical reactions, centred mainly in the theoretical and computational approaches, although some experimental techniques will also be explained.
Registration deadline: March 9, 2018
More Information at https://www.cecam.org/workshop-1529.html

Although computer simulation of the electronic structure and properties of solids began decades ago, only recently the solid state methodologies have become sufficiently reliable that their application has resulted in an increasingly important impact on solid state chemistry and physics. , While a large number of course and tutorials already exists, they are mainly focused on audiences with strong background on solid state physics, and usually devoted to some particular electronic structure code. Far more unusual are the courses designed to teach the solid-state techniques to chemists, thus contributing to eliminate the cultural barriers that still exist between both groups. This school is primarily targeted to PhD students and post docs who are interested or are starting to learning about the application theory methods and techniques to the study of the physics and chemistry of the solid state.
The level of this tutorial corresponds to master or doctorate students in areas of physics and chemistry. After two initial days where the fundamentals of theory of the treatment of the electronic structure of solids will be presented to the students, the remaining of the tutorial will be devoted to the examination of specific and hot areas like characterization of chemical bonding in solids and relationship to macroscopic properties, structure and reactivity at solid surfaces, including layered systems and highly correlated oxides, and magnetic properties. The afternoons will be dedicated to practical hand-on tutorials. Several computational codes are actively being developed, capable of simulating molecules, pure and defective crystals, surface and transport properties, and reactive processes in the bulk and interfaces. Getting familiar with the different codes and their possibilities requires an adequate training that merges theory and practice in substantial amounts.
More info at: https://www.cecam.org/workshop-1553.html

Photoinitiated processes are not only important for understanding natural phenomena but they also play an undeniable role in the booming fields of renewable energy, material design and medicine. Excited state processes have traditionally been explained from a static point of view, delivering in some cases a biased, incorrect or even incomplete description of the former. The simulation of the dynamics of such processes is therefore fundamental for the quest to understand the chemical and physical mechanisms.
The purpose of this school is to introduce its participants to state-of-the-art methodologies for the simulation of the dynamics of processes in the excited state, following the evolution in time of photoinitiated reactions, one of the priority topics of this call.
The school will be focused in simulating the dynamics of complex molecules. Electronic ab initio or TD-DFT methods would be sketched for obtaining the electronic wavefunctions or densities, that would be afterwards quantum-mechanically propagated. Moreover, several approaches for the treatment of the nuclei will be also provided, from full quantum dynamics to mixed quantum-classical dynamics.
The course is directed at PhD students, and young researchers, beginners in the field, working in theoretical chemistry and molecular physics.
The tutorial will be organized in 6 theoretical and 6 practical sessions, the latter taking place in the computer lab. The theoretical sessions will be of 3 hours and practical sessions will last 3 hours. The school will comprise 3 didactic blocks.
The first block will have an introductory character and will offer an overview of the field. The following block will focus on mono- and multi-configurational electronic structure methods for the description of excited states. The last block will cover dynamics methodologies. See description below. The school will end with a comprehensive overview (2 hours) of state-of-the-art applications, limitations, suitabilities, future perspectives and challenges of the different static and dynamical approaches described in the school.
More information: https://www.cecam.org/workshop-1542.html

The recent development of novel light sources like x-ray free-electron lasers and table-top lasers for high-harmonic generation, which are capable of delivering controllable sequences of intense sub-femtosecond ionizing pulses, has opened the way to monitor and control electron dynamics in atoms and molecules at its natural time scale, the attosecond (Chem. Rev. 2017, DOI: 10.1021/acs.chemrev.6b00453). The description of the coherent superposition of electronic continuum states that the interaction of such pulses with molecules generates goes beyond the capabilities of standard quantum-chemistry packages, which have been designed to describe the lowest bound states. Furthermore, stationary state-based pictures based on lowest-order perturbation theory are, in most cases, inapplicable. The purpose of this school is to introduce state-of-the-art ab-initio, hybrid and TDDFT numerical methods that can cope with ultra-fast dynamics in the electronic continuum of molecules, with an emphasis on unbound states in strong-fields and on the need to go beyond single-active-electron models to properly account for electron correlation. The course is directed to advanced master students, PhD students and young post-doctoral researchers in atomic and molecular physics, theoretical chemistry and applied mathematics, with an interest in developing new software for coherent control of electronic dynamics in systems of chemical interest.
The tutorial will be organized in 5 theoretical sessions and 4 practical sessions in the computer lab. Both theoretical and practical sessions will be of 4 hours. The school comprises four didactic blocks. The first block has an introductory character. It offers an overview of the field and a tutorial on strong field physics. The following three blocks focus on systems of increasing complexity and will be devoted to the description and use of new computational methods for fast time evolution in correlated systems in non-perturbative conditions (see description below). The school will end with a comprehensive overview of state-of-the-art results in attosecond pump-probe and strong field molecular science obtained with ab initio “exact” simulations in small systems, on the one side, and with TD-DFT effective-field simulations, capable of coping with larger systems, on the other side. The future perspectives, challenges and mutual interaction of these two complementary approaches will be discussed.
More information: https://www.cecam.org/workshop-1552.html