Archive for the ‘News’ Category

The 4th and final XLIC Action General Meeting (COST Acton CM1204) will take place in Prague (CZ), on March 14-16, 2017.  The registration is already open (http://www.jh-inst.cas.cz/xlic2017/registration).

This last general meeting of the XLIC Action will be a great opportunity to share with your colleagues the results derived from networking activities within the Action and try to ensure the maintenance of collaborations now that XLIC Action is about to finish.

The Meeting will also include the 3rd Young Scientist Forum (YSF) – a special half-day with talks given by young researchers (PhD students and post-docs). Part of the speakers on the YSF will be selected among those young researchers sending an abstract.

Please visit the meeting and XLIC websites for more information: http://www.jh-inst.cas.cz/xlic2017/home   and http://www.xlic.eu

Important deadlines: Abstract submission: January 31, 2017; Accommodation: February 14, 2017.

Looking forward to see you in Prague
Miroslav Polášek.                                                                                         Manuel Alcami
Local Chair of the meeting                                                                         Chair of the XLIC COST Action
Heyrovský Institute of Physical Chemistry                                              Departamento de Química
Academy of Sciences of the Czech Republic                                           Facultad de Ciencias – Modulo C-13
Dolejškova 2155/3, 182 23 Praha 8                                                          Universidad Autónoma de Madrid
Czech Republic                                                                                             28049 – Madrid (Spain)
tel.: (+420) 266053066, (+420) 266053299                                          Tel: +34 914973857
fax:  (+420) 286582307
e-mail: miroslav.polasek@jh-inst.cas.cz                                                 e-mail: manuel.alcami@uam.es

The International school on “The Frontiers of Attosecond and Ultrafast X-ray Science” will be held from 19th to 28th March 2017 in Erice, Sicily, Italy.

The primary objective of this new school is to educate the next generation of scientists who will impact the future of attosecond and ultrafast x-ray science. We anticipate that the school will meet on a regular basis every two years and become a foundation for the ultrafast community. Consequently, the main topics of the course are the following: (i) attosecond science and technology, devoted to the generation and application of attosecond pulses to the investigation of electronic dynamics in atoms, molecules, nanostructures and condensed phases; (ii) fundamentals, methods and applications of free electron lasers, synchrotron radiation, ion collisions in atomic and molecular science. Lectures will cover current developments in theory and experiments but are also intended to give the basics of the field.

Please note that, PhD students and post-docs willing to attend the school can apply for scholarships (deadline 30 January 2017). For more details see: http://www.erice-attosecond.it/registration

The school co-organised by XLIC COST Action and sponsored by Politecnico di Milano, Italian Ministry of Education and Scientific Research, Sicilian Regional Parliament, ELI-ALPS and Ettore Majorana Foundation and Centre for Scientific Culture.

The organizers,

Louis Di Mauro, Alicja Domaracka, Mauro Nisoli and  Sergio Martellucci

Scientists can now directly track the locations of all the atoms of an entire molecule while one of its bonds breaks and a single proton escapes.

Source: Dr. Alina Hirschmann (Corporate Communications – ICFO)

Imagine what it would be like to watch how the individual atoms of molecules rearrange during a chemical reaction to form a new substance, or to see the compounds of DNA move, rearrange and replicate. Such capability would give unprecedented insight to understand and potentially control the processes.

The simple idea of watching how molecules break, or transform, during chemical reactions has, until now, been unfathomable since it requires tracking all of the atoms, which constitute a molecule, with sub-atomic spatial and few-femtosecond temporal resolution. Hence, taking such “snapshots” with a combined spatio-temporal resolution to witness a molecular reaction was considered fodder for science fiction. Exactly 20 years ago, one of the ideas proposed considered using the molecule’s own electrons to image its structure: Teach the molecule to take a selfie! The idea was brilliant but impossible to implement – until today.

In their recent study, reported in Science, ICFO researchers from the Attoscience and Ultrafast Optics Group in collaboration with researchers from the USA, the Netherlands, Denmark and Germany, have reported on the imaging of molecular bond breakup in acetylene (C2H2) nine femtoseconds (1 femtosecond = 1 millionth of a billionth of a second) after its ionization. The team was able to track the individual atoms of the isolated acetylene molecule with a spatial resolution as small as 0.05 Ångström – less than the width of an individual atom – and with a temporal resolution of 0.6 femtoseconds. What’s more, they were able to trigger the breakup of only one of the bonds of the molecule and see how one proton leaves the molecule.

“Our method has finally achieved the required space and time resolution to take snapshots of molecular dynamics without missing any of its events, and we are eager to try it out on other molecular systems such as chemical catalysts and bio-relevant systems” said Jens Biegert, ICREA professor at ICFO and leader of the research.

Teaching a molecule to take a selfie

The team developed a world-leading ultrafast mid-IR laser source and combined it with a reaction microscope to detect the 3D momentum distribution of electrons and ions in full kinematic coincidence. In the experiment, a single isolated acetylene molecule was oriented in space with a short laser pulse. A strong enough, follow up, infrared pulse liberated one electron from the molecule, accelerated it on a returning trajectory and forced it to scatter off its own parent molecular ion, all within only 9 femtoseconds.

Benjamin Wolter explained, “the flight path and kinetic energy of all collision fragments were recorded with the reaction microscope similar to a big particle physics experiment.”

After some clever data processing, the team was able to extract the entire molecular structure and, moreover, they could show that orienting the molecule along the electric field of the laser, or perpendicular to it, completely changed its dynamics. In one case, the molecule underwent vibrational motion with the laser field, while in the other case a C-H bond was clearly broken. The experiment is the first direct visualization of bond cleavage and observation of the proton during its departure from the [C2H2]2+ ion, something that was never seen before.

“We took one electron, steered it along a specific path with the laser and scattered it off an isolated molecule to record its diffraction pattern” said Biegert, “it is mind-boggling to imagine the length and time scales of the experiment. The fantastic cooperation between experimentalists and theorists, atomic physicists and quantum chemists from ICFO, Kansas State University, Max-Planck-Institut für Kernphysik, Physikalisch Technische Bundesanstalt, Center for Free Electron Laser Science/DESY/CUI, Aarhus University, Friedrich-Schiller University Jena, Leiden University, and Universität Kassel made it possible to achieve such feat”.

icfo_lied_biegert_science_illustration_hr_crCaption: Illustration of laser-induced electron diffraction imaging of a molecular bond break-up in acetylene. Image Credit: ICFO / Scixel

References

Wolter et al “Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene”, Science, 2016, Vol. 354, Issue 6310, pp. 308-312, DOI: 10.1126/science.aah3429 (http://science.sciencemag.org/content/354/6310/308)

About ICFO

ICFO – The Institute of Photonic Sciences, member of The Barcelona Institute of Science and Technology, is a research center located in a specially designed, 14.000 m2-building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona. It currently hosts 400 people, including research group leaders, post-doctoral researchers, PhD students, research engineers, and staff.   ICFOnians are organized in 23 research groups working in 60 state-of-the-art research laboratories, equipped with the latest experimental facilities and supported by a range of cutting-edge facilities for nanofabrication, characterization, imaging and engineering.

The Severo Ochoa distinction awarded by the Ministry of Science and Innovation, as well as 13 ICREA Professorships, 21 European Research Council grants and 6 Fundació Cellex Barcelona Nest Fellowships, demonstrate the centre’s dedication to research excellence, as does the institute’s consistent appearance in top worldwide positions in international rankings. From an industrial standpoint, ICFO participates actively in the European Technological Platform Photonics21 and is also very proactive in fostering entrepreneurial activities and spin-off creation. The center participates in incubator activities and seeks to attract venture capital investment. ICFO hosts an active Corporate Liaison Program that aims at creating collaborations and links between industry and ICFO researchers. To date, ICFO has created 5 successful start-up companies.

 

Next XLIC Expert Meeting will join WG1 and WG2 topics under the title “From Ultrafast to Ultraslow Dynamics in Molecules and Clusters”. It will be held in the Weizmann Institute of Science Israel , from 23th to 25th January  2017.

The workshop will bring together top researchers in a wide range of fields with the hope of establishing new interactions and future directions. The workshop participation is open to everybody and is jointly organised by COST CM1204 Action (XLIC). For more information please visit the conference website: http://www.weizmann.ac.il/conferences/UUDMC2016/

Abstract Submission Deadline: November 1st, 2016
Registration Deadline: January 5th, 2017

List of Invited speakers:
Noam Agmon, Hebrew University, Israel
Lars H. Andersen, Aarhus University, Denmark
Itzik Ben-Itzhak, Kansas State University, USA
Valerie Blanchet, CELIA, Bordeaux, France
Anastasia Bochenkova, Moscow State University, Russia
Steen Brondsted Nielsen, Aarhus University, Denmark
Philip Bucksbaum, Stanford, USA
Francesca Calegari, Politecnico Milano, Italy
Lorenz Cederbaum, University of Heidelberg, Germany
Henrik Cederquist, Stockholm University, Sweden
Brett Esry, Kansas State University, USA
Sharly Fleischer, Tel-Aviv University, Israel
Jason Greenwood, Queen’s University Belfast, UK
Christiane Koch, Universität Kassel, Germany
Ronni Kosloff, Hebrew University, Israel
Holger Kreckel, MPI-K Heidelberg, Germany
Stephen Leone, UC Berkeley, USA
Nimrod Moiseyev, Technion, Israel
Edvardas Narevicius, Weizmann Institute, Israel
Daniel Neumark, UC Berkeley USA
Thomas Pfeifer, MPI-K Heidelberg, Germany
Igor Schapiro, Hebrew University, Israel
Haruo Shiromaru, Tokyo Metropolitan University, Japan
Jan. R. R. Verlet, Durham University, UK
Mathias Weber, JILA, Colorado, USA
Roland Wester, Universität Innsbruck , Austria

Local Organiser: Yoni Toker (Bar Ilan University)

2nd WG1 Meeting “Ultrafast electron dynamics in molecules” (COST Action CM1204)
Edinburgh, UK.
29-30 August 2016

The second WG1 meeting of COST CM1204 Action was organized by Prof. Olga Smirnova and Dr. Adam Kirrander. It was aimed at presenting advances of all the nodes participating in the WG1 of the action, as well as to discuss problems and promote collaborations between all partners.

The meeting was organized into 6 sessions. Each session was moderated by a discussion leader. Each session opens with 10 min introduction to the field, presented by a discussion leader. The introduction was followed by 3 or 4 talks,  20 minutes each (without the questions). Each session was concluded by a 30 minutes general discussion involving 3 or 4 speakers (altogether at the stage, see pictures below) on the topics of their talks and topics suggested by the the discussion leader, who guided this discussion. The audience participated very actively in these discussions.  3 hot-topics were selected from contributed abstracts. The meeting also included 2 poster-sessions.

The number of participants was 78.
The final program of the meeting can be found below.

The Local Organiser,

Dr. Olga Smirnova

Max-Born Institute
Max-Born strasse 2a, 12489 Berlin
e-mail: olga.smirnova@mbi-berlin.de

Related links:

The 3rd XLIC WG2 Expert meeting (July 22-28, 2016) was focused on Delocalized Electrons in Atomic and Molecular Nanoclusters. It was organized by Klavs Hansen and took place at the Ettore Majorana Center for Scientific Culture, Erice, Sicily, Italy.

It was aimed at scientists, postdocs and graduate students who work with the effects of delocalized electrons with focus on free nanoclusters. Subjects such as quantum size effects, novel materials, and reaction pathways exhibit a range of phenomena which are highly sensitive to delocalized electrons’ mobility, screening, response, direct and exchange interactions, correlations, etc. The aim of the workshop was to bring together researchers in adjacent fields to examine recent and future developments.

XLIC-WG2meeting-Erice_IT-picture-3

The structure was workshop format of a week’s duration and included invited talks, selected oral presentations, a poster session, as well as time for individual discussions, as can be seen in the program below. The number of participants was 58.

The workshop was organized locally by the Ettore Majorana Center for Scientific Culture. The center, with the president Prof. Antonino Zichichiby, has a long and illustrious history of organizing such types of meetings. The workshop was in the framework of the International School of Solid State Physics, directed by Prof. Giorgio Benedek.

Klavs Hansen (Gothenburg, Sweden)
The Local Organiser

Related links:

  • WG2 Expert Meeting on Delocalized Electrons (Italy, July 2016) – Final program
  • WG2 Expert Meeting on Delocalized Electrons (Italy, July 2016) – Poster
  • WG2 Expert Meeting on Delocalized Electrons (Italy, July 2016) – Web site

COST WG1 meeting (August 29, 2016 – August 30, 2016, Edinburgh, UK) is approaching.

Abstract submission for the WG1 meeting is now open. Submission deadline is June 20.
7 hot topic talks will be selected from all submitted abstracts.
Please send abstracts to: olga.smirnova@mbi-berlin.de and Adam.Kirrander@ed.ac.uk and use the subject line: Edinburgh COST WG1 abstract.

The on-line link for booking the rooms will appear soon.

Do not miss the opportunity to attend the  Faraday discussion on  ‘Ultrafast imaging of photochemical dynamics’, which will also take place in Edinburgh on August 31-Sept 2, see:  http://www.rsc.org/ConferencesAndEvents/RSCConferences/FD/Photodynamics-FD2016/index.asp
Abstract (poster) submission deadline for the Faraday discussion is June 20

Brief programme for the WG1 meeting
(Detailed programme can be downloaded here: 2ndWG1meeting-table)

Session 1: “Ultrafast Non-adiabatic dynamics, Surface hopping, solvent effects”.
Discussion leader: V. Engel.
Invited speakers: M. Barbatti, B. Lasorne, F. Santoro
Session 2: “Synchrotrons, ultrafast optical and X-ray absorption spectroscopies”
Discussion leader: V. Averbukh
Invited speakers:  O. Travnikova, M.A. Hervé du Penhoat, C. Milne
Session 3: “Time-resolved cluster dynamics”
Discussion leader: T. Fennel
Invited speakers: D. Rolles, M. Krikunova, U. Saalman
Session 4: “Imaging and control of molecular dynamics”
Discussion leader: R. Moshammer
Invited speakers: J. Kuepper, R. Forbes, M. Richter, J. Feist
Session 5: “Multielectron dynamics in external fields: advances in theory”
Discussion leader: E. Suraud
Invited speakers: L. Madsen, A. Scrinzi, H. Bachau, S. Patchkovskii
Session 6: “New trends in attosecond spectroscopy”
Discussion leader: M. Ivanov
Invited speakers: J. Mauritsson, A. Brown, M. Dahlström, F. Lepine

The next edition of the School on Excited States that will take place in the Spanish CECAM node (Zaragoza, ZCAM) in April. The school is intended for beginners in the field of excited states (first year PhD and master students).
More information on the School can be found in the following URL:
http://www.cecam.org/workshop-1316.html

Please note that registration will be open until March,1st, and that the number of participants will be limited.

Unfortunately, this year the COST is not directly involved in the organisation, so there is no extra funding available for the COST members.

Ionizing radiation can bring an atom to a super-excited state that survives for an infinitesimal time before emitting one electron. Using advanced attosecond interferometric techniques, XLIC researchers from Lund, Madrid, Paris, and Stockholm have now resolved the collapse of such state in time, finally confirming a theoretical prediction formalized more than 50 years ago that has its roots at the very beginning of the quantum revolution.

When irradiated with light with sufficiently high frequency, such as extreme ultraviolet rays or x rays, matter emits electrons; this is the celebrated photoelectric effect. To explain this effect, in 1905 Einstein suggested that light was composed of photons, small packets of energy that provide individual electrons with enough momentum to escape the Coulomb attraction of atomic nuclei. Some twenty years later, quantum theory finally provided the theoretical framework necessary to formalize Einstein’s intuition: matter does exchange energy by quanta, and, in the simplest scenario, the absorption of an ionizing photon is accompanied by the instantaneous emission of an electron wave packet.

In 1933, H. Beutler [Z. Physik 86, 495], an experimental physicist, showed that things were not as simple after all. He found that the absorption spectra of rare-gas atoms above the ionization threshold exhibit wide peaks with anomalously asymmetric profiles. These peaks indicated that the atom, instead of being instantaneously ionized, could be temporarily excited to some unstable state, hence the finite width. The meaning of the peak asymmetry, however, remained obscure. The following year, Enrico Fermi, then a professor in Rome, assigned this puzzle to Ugo Fano, a 22 years old post-doctoral collaborator, who published the provisional results of his investigations in 1935 in an Italian journal. According to Fano, the asymmetry of photoelectron absorption peaks arise from the interplay between the direct-ionization wave front, predicted since the beginning, and the trailing emission from the collapsing excited atom. Due to the dispersive character of electron waves (more energetic electrons move faster than less energetic ones), the latter component catches up with the direct wave front, carving a trough where the two waves interfere destructively. It is this interference that skews the spectrum of the electrons from the decaying atom, which would otherwise be a perfectly symmetric Lorentzian peak.

Fano had to interrupt his studies of atomic photoionization due to the precipitating historical conditions that eventually lead to the outbreak of WWII.  For more than 25 years, his 1935 paper, which was written in Italian, was all but forgotten. In 1961, Fano managed to resume his studies, publishing a second more refined English version of his work which soon became one of the most cited physics papers of all times. Since then, the characteristic asymmetric photoelectron energy distribution predicted by Fano’s theory has been confirmed for countless systems. One inherent aspect of the phenomenology modeled by Fano, however, that is how the direct and resonant wave packets come together in time to give rise to the final spectral asymmetry, had eluded any direct experimental confirmation for all this time.

In a paper published on February 18th in Nature Communication, researches from Lund University, Universidad Autónoma de Madrid (UAM), Université Pierre et Marie Curie in Paris, and Stockholm University have announced that they have finally closed this long-standing gap. Using a novel attosecond interferometric laser technique developed in Lund by the experimental group of Professor Anne L’Huillier, the authors were able to compare in detail the structured wave front generated by the resonant ionization of the argon atom with the simpler direct-ionization wave obtained at energies where no metastable state is excited. Their finding closely matches the prediction of the Fano model, which researchers from UAM have extended to the multiphoton regime entailed in the experiment. This finding, which is the first “observation” of the collapse of an autoionizing atomic state, opens the way to the detailed study of the ultrafast photoelectron dynamics, which plays a fundamental role in many processes triggered by energetic light in matter, from radiation damage of biological tissues to charge emission in photoelectric cells.

Reference:
Spectral phase measurement of a Fano resonance using tunable attosecond pulses
M. Kotur, D. Guénot, A. Jiménez-Galán, D. Kroon, E.W. Larsen, M. Louisy, S. Bengtsson, M. Miranda, J. Mauritsson, C.L. Arnold, S.E. Canton, M. Gisselbrecht, T. Carette, J.M. Dahlström, E. Lindroth, A. Maquet, L. Argenti, F. Martín & A. L’Huillier
Nature Communications, 7, 10566. 18 de febrero de 2016.
DOI: 10.1038/ncomms10566

Following requests for deadline extensions and the upcoming holiday period, the deadline to submit abstracts for the special Issue “Femtochemistry” in Structural Dynamics has been extended to 15  February 2016.
Of course, all accepted papers are published online and assigned a DOI immediately and are, thus, also instantly fully citable.

Submission for papers is open at http://sd.peerx-press.org/cgi-bin/main.plex

Please consider to submit your work related to the field of femtochemistry and -biology, as well as ultrafast structural dynamics of molecules and (bio)chemical systems in the widest sense, to this special issue. The topical selection and the open access nature of the journal will provide the widest possible dissemination of your paper, and the joint publication of all papers in a single issue provides high visibility.